当前位置: 主页 > 文章 > 经典文章 > >

小型募化動圈式麥克風之設計與製干

时间:2018-09-29来源:原创 作者:admin阅读:
  

  本論文為第壹個提出产小型動圈式麥克風之設計與製干,使用MEMS技術─體型微加以工、面型微加以工與電鑄製程將動圈式麥克風確切的庞父亲募化。動圈式麥克風組成首要為振膜、感應線圈與磁路。為了改革傳統振膜與感應線圈分量太重而導致振動快度太缓,提出产平面式感應線圈與振膜,提高其振動快度;並匹配磁路設系統設計、模擬剖析與量測,獲得較佳之磁路設計,進而提高小型動圈式麥克風感度。   動圈式微麥克風的靈敏度首要取決於磁場中博狗 app、感應線圈長度與振動快度。故本論文以雙磁路系統設計來添加以博狗 app,並選用低楊氏係數與應力的振膜材料聚亞醯胺干為振膜(直徑:16 mm,厚度1 um),結合製干平面感應線圈於上,藉此設計以提高其振動快度。在本論文之設計下,雙磁路博狗 app量測值却達0.4190 T,模擬值為0.3747 T,感應線圈長度為36.5 cm,電阻值為193 Ω,振動快度為10.4 um/s。在1k Hz取樣頻比值下,量測其頻比值響應值為-54.8 dBV/Pa,相當於輸出产感度為1.82 mV/Pa,相較於普畅通市特价而沽動圈式麥克風之頻比值響應值為-50~-60 dBV/Pa,相當於輸出产感度為3.16 mV/Pa~1 mV/Pa。本論文摒除了能改革傳統動圈式麥克風振動快度過缓,亦能改革傳統高頻頻比值響應不好之缺點,使頻寬擴父亲,藉由此設計,本論文所切磋之小型募化動圈式麥克風已達市特价而沽動圈式麥克風之標準。 目錄 查封皮 空白頁 書名頁 審核頁 任命權書 誌謝 i 华语摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 第壹章 緒論 1 (壹) 前言 1 (二) 動圈式麥克風發展歷史回顧 2 (叁) 麥克風種類簡介 4 1. 壓阻式麥克風 5 2. 壓電式麥克風 5 3. 光學式麥克風 6 4. 電容式麥克風 6 5. 絲帶式麥克風 8 (四) 切磋動機與目的 8 (五) 論文架構 9 第二章 小型募化動圈式麥克風之根本规律說皓 11 (壹) 前言 11 (二) 動圈式麥克風之感應電動勢 11 (叁) 麥克風靈敏度 13 (四) 麥克風之機械感度 14 (五) 麥克風雜訊 16 (六) 麥克風振動快度量測规律 17 (七) 動圈式麥克風之頻比值響應 18 (八) 磁路量測规律 19 第叁章 小型募化動圈式麥克風元件之設計與模擬剖析 21 (壹) 前言 21 (二) 小型募化動圈式麥克風設計考量 21 (叁) 振模設計 22 (四) 磁路系統設計 22 (五) 感應線圈設計 24 (六) 模擬結实與剖析 24 1. ANSYS模擬剖析結实 24 2. COMSOL 磁路模擬剖析結实 25 第四章 小型募化動圈式麥克風製程 27 (壹) 前言 27 (二) 小型募化動圈式麥克風元件製程 27 1. 背板微電鑄製程 28 2. 背板濕蝕雕刻製程 30 第五章 結实與討論 33 (壹) 前言 33 (二) 製程考量與製程中遭受問題之松決方法 33 1. 濕蝕雕刻技術 33 (1) 單晶矽蝕雕刻 33 (2) 氮募化矽蝕雕刻 34 2. 微影所遭受之問題 35 3. 微電鑄技術 35 4. 電鍍後去摒除電鍍光阻問題 36 5. 薄膜應力與振膜材質選擇 37 6. 麥克風元件收集儿子問題 38 (叁) 製程結实與討論 39 (四) 麥克風博狗 app量測 39 (五) 麥克風機械感度量測 40 (六) 麥克風振動快度量測 41 (七) 麥克風頻比值響應量測 41 第六章 結論與不來展望 44 (壹) 結論 44 (二) 不來展望 45 參考文獻 46 [1] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity,” Phys. Rev. vol. 10, p. 39, 1917. [2] K. Matsuzawa, “Condenser microphones having a flat frequency response up to 500kHz,” J. Appl. Phys. vol. 17, p. 451, 1978. [3] P. R. Scheepera, A.G.H. van der Donkb, W. Olthuis, P. Bergveld, “A review of silicon microphones,” Sens. Actuators A. vol. 44, p. 1, 1994. [4] A. Dehe, “Silicon microphone development and application,” Sens. Actuators A. vol. 133, p. 283, 2007. [5] 徐振諄, “高感度小型電容式矽微麥克風之研製”, 國立中興父亲學稀 稠密工程切磋所碩士論文, 2007. [6] C. W. Tan, J. Miao, “Analytical modeling for bulk-micromachined condenser microphone,” J. Acoust. Soc. Am. vol. 120, p. 750, 2006. [7] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, “A micromachined thin-film teflon electret microphone,” International Conference Solid-State Sensors and Actuators, p. 425, 1997. [8] R. C. Coile, "The Development of Modern Microphones," J. Acoust. Soc. Am. vol. 11, p. 163, 1931. [9] http://history.sandiego.edu/gen/recording/microphones2.html [10] J. Eargle, “The microphone book,” Oxford: Elsevier Press, p. 84, 2004. [11] W. Fiala, “Electroacoustic Transducer,” U. S. Patent. 3014099, 1961. [12] S. Yoshida, “Dynamic microphone,” U. S. Patent. 4427845, 1984. [13] S. Uzawa, and Yoshio Kikuti, “Diaphragm of dynamic microphone,” U. S. Patent. 5148492, 1992. [14] H. Akino, “Dynamic microphone,” U. S. Patent. 2005/0276428, 2005. [15] G. M. Sessler, and J.E. West, “Self-biased condenser microphone with high capacitance,” J. Acoust. Soc. Am. vol. 34, p. 1787, 1962. [16] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones,” Sens. Actuators A. vol. 44, p. 1, 1994. [17] R. Schellin, and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges,” Sens. Actuators A. vol .32, p. 555, 1992. [18] M. Royer, J.O. Holmen, M. A. Wurm, O. S. Aadland, and M. Glenn, “ZnO on Si integrated acoustic sensor,” Sens. Actuators A. vol. 4, p. 357, 1983. [19] T. J. Yao, “Parylene for MEMS applications,” Ph.D dissertation, Department of Electrical Engineering, California Institute of Technology, Pasadena, California, p. 191, 2002. [20] H. S. Noh, S. Kim, J. P. Hesketh, H. M, and L. Wong, “Miniature corrugated diaphragm for fiber-optic-linked pressure sensing (FOLPS),” ASME International Mechanical Engineering Congress & Exposition Washington, D. C., p. 16, 2003. [21] 邢泰剛, “微機電系統技術與應用”, 行政院國家科學委員會稀细儀器中心出产版, p. 544, 2003. [22] P. R.Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “Fabrication of silicon condenser microphone using single wafer technology,” J. Microelectromech. Syst. vol. 1, p. 3, 1992. [23] M. L. Gayford, B. Sc., C. Eng., M. I. E. E., A. C. G. I., D. I. C. Senior engineer, ITT Component Group, and Harlow, “Electroacustic, microphone, earphones and loudspeakers,” London: Newnes- Butterworths Press., p. 137, 1971. [24] 邢泰剛, “微機電系統技術與應用,” 行政院國家科學委員會稀细儀器中心出产版, p. 544, 2003. [25] A. J. Sprenkls, “A silicon subminiature electret microphone,” Ph.D. Dissertation, Twente University, Netherlands, 1988. [26] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, and Int. Conf, “Solid-State Sensors and Actuators Transducers”, IEEE Press 425, 1997. [27] M. D. Giovanni, “Flat and corrugated diaphragm design handbook”, New York: CRC Press, p. 130, 1982. [28] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, and M. Heschel, ”Chip-size-packaged silicon microphones,” Sens. Actuators A. vol. 92, p. 23, 2001. [29] M. P. Norton, “Fundamentals of noise and vibration analysis for engineer,” New York: Cambridge University Press, p. 197, 1969. [30] A. G. H. van der, Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier,” J. Acoust. Soc., Am. vol. 91, p. 2261, 1992. [31] A. G. H. van der, Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers,” Sens. Actuators A. vol. 25, p. 515, 1991. [32] W. R. Bevan, R. B. Schulein, and C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology,” J. Audio Eng. Soc. vol. 26, p. 947, 1978. [33] http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213018,00.html [34] D. P. Arnold, S. Gururaj, S. Bharadwaj, T. Nishida, and M. Sheplak, “A piezoresistive microphone for aeroacustic measurement,” ASME Int. Mechanical Engineering Congress & Exposition, Proceedings of IMECE’01, p. 1, 2001. [35] 揚善國, “感應與量測度工程,” 全華科技圖書股份拥有限公司”, p. 7, 2003. [36] P. M. Morse, “Vibration and aound, international series in pure and applied physics,” New York: McGraw-Hill Press, 2nd ed., p. 189, 1948. [37] B. B. Bouer, and Shure Brothers, “Equivalent circuit analysis of mechanical-acoustic structures,” Inc. Chicago, Illinois, p. 112, 1954. [38] 白皓憲, “工程聲學,” 全華科技圖書股份拥有限公司出产版, p. 5, 2005. [39] 王以真, “實用磁路設計,” 全華科技圖書股份拥有限公司出产版, p. 189, 2006. [40] 陳建盛, “矽晶麥克風之設計與製干, ” 國立提交畅通父亲學電機與把持工程系碩士論文, 1999. [41] H. S. Noh, “Miniature corrugated diaphragm for fiber- opitc- linked pressure sensing (FOLPS),” ASME Int. Mechanical Engineering Congress & Exposition Proceedings of IMECE’ 03, p. 1, 2003. [42] 王以真, “實用磁路設計,” 全華科技圖書股份拥有限公司出产版, p. 48, 2006. [43] S. Wolf, “Silicon Processing for the VLSI,” era. 2, Process integration , 1986. [44] K. R. Williams, and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromech. Syst. vol . 5, p. 256, 1996. [45] K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing-Part II,” J. Microelectromech. Syst. vol. 12, p. 761, 2003. [46] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon,” J. Electrochem. Soc., p. 135, 1985. [47] T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” IEEE Electron. Device Lett. EDL-2, p. 44, 1981. [48] P. M. Sarro, and A. W. van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications,” J. Electrochem. Soc. vol. 133, p. 1724, 1986.

分享到:
最新评论 查看所有评论
加载中......
发表评论
用户名:(新注册) 密码: 匿名

栏目导航

推荐阅读

热门阅读